

Study on Generative Adversarial Network for Handwritten Text

Bo Ji
Zhejiang University, China

Keywords: GANs, Handwritten Text, HWGANs.

Abstract: Generative adversarial networks (GANs) has proven hugely successful in variety of
applications of image processing. However, generative adversarial networks for handwriting is
relatively rare somehow because of difficulty of handling sequential handwriting data by
Convolutional Neural Network (CNN). In this paper, we propose a handwriting generative
adversarial network framework (HWGANs) for synthesizing handwritten stroke data. The main
features of the new framework include: (i) A discriminator consists of an integrated
CNN-Long-Short-Term-Memory (LSTM) based feature extraction and a Feedforward Neural
Network (FNN) based binary classifier; (ii) A recurrent latent variable model as generator for
synthesizing sequential handwritten data. The numerical experiments show the effectivity of the
new model. Moreover, comparing with sole handwriting generator, the HWGANs synthesize more
natural and realistic handwritten text.

1. Introduction
Learning generative sequential models is a long-standing machine learning challenge and

historically in the domain of dynamic Bayesian networks (DBNs) such as Hidden Markov Model
(HMMs), then further handled by Recurrent Neural Network. However, it has been observed that the
synthesized texts of the previous models are not as natural as human-being’s normal written text.

Besides, generative adversarial networks (GANs) are a merging technique proposed in 2014 [4] to
learn deep representation without numerous annotated training data. This architecture achieves the
generation of high reality. Therefore, a common analogy is to think of bringing the idea of GANs
into handwritten text generation of digital ink in order to achieve more realistic handwritten text than
handwritten generator alone.

In this paper, we propose a generative adversarial architecture to generate realistic handwritten
strokes. The following bulleted points summarize our key contributions.

We design a discriminator consisting of a compact CNN-LSTM based feature extraction,
followed by an auxiliary feedforward neural network to distinguish between genuine and forgery
hand-writing.

We construct an adversarial architecture by combining the designed discriminator and the
handwritten generator proposed by Alex Grave [1], referred as Alex’s Generator throughout the
whole remaining paper.

We use HWGANs to obtain more realistic English handwritten text than Alex’s Generator.

2. Related Work
Variational RNN (VRNN) Handwritten Generator: VRNN [8] explores the inclusion of latent

random variables into the hidden state of an RNN by combining a recurrent variational autoencoder
(VAE), which is effective modeling paradigm to recover complex multimodal distributions over the
non-sequential data space [9]. Whereas their synthesized handwritten data are not realistic enough.

Alex Grave’s Handwritten Generator: Alex Grave proposed an RNN based generator model to
mimic handwriting data [1]. For each timestamp, Alex’s Generator encodes prefix sampled path to
produce a set of parameters of a probability distribution of next stroke point, then sample the next
stroke point given this distribution. There are two variants of Alex’s Generator, i.e., handwritten

2019 3rd International Conference on Computer Engineering, Information Science and Internet Technology (CII 2019)

Published by CSP © 2019 the Authors 318318

predictor and handwritten synthesizer, where the later one has the capability to synthesize
handwritten text for given text.

3. Proposed Adversarial Approach
In this section, we present our proposed adversarial approach for digital ink handwritten text

generation. As standard architectures of GANs, HWGANs comprise a discriminator 𝐷𝐷 and a
generator 𝐺𝐺. For a more rigorous description, let us introduce the notations used throughout the
whole remaining paper. Denote 𝐻𝐻 = {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} as a handwritten text instance, which consists
of a sequence of strokes, where 𝑆𝑆𝑖𝑖 refers as the i-th stroke of current handwritten instance. One
stroke 𝑆𝑆 comprises a sequential stroke points, i.e.,
𝑆𝑆 = {(𝑥𝑥1,𝑦𝑦1, 𝑠𝑠1); (𝑥𝑥2,𝑦𝑦2, 𝑠𝑠2); … ; (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑠𝑠𝑚𝑚)} , where (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖) is i-th stroke point with
(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) as its coordinate axis and 𝑠𝑠𝑖𝑖 ∈ {0, 1} as pen up/down status respectively to indicate the
starting or ending stroke point.

3.1 Discriminator

Discriminator 𝐷𝐷 is essentially a binary classifier to predict handwritten text of digital ink as a
forgery or not. The CNN-LSTM model consists of a CNN and an LSTM, whose configurations are
displayed in Table 1. CNN serves to encode extracted path signature feature into a matrix, since the
input 3D tensor possesses variable widths, consequently results in that the output matrix of CNN
possesses variable columns. Then each column of this encoded matrix is further fed into an LSTM
cell sequentially, an FNN is assembled on the top of last output of the LSTM to calculate the
probability of current instance as genuine written text. Thus, loss function of discriminator is
naturally selected as binary cross entropy loss. The whole procedure is shown in Figure 1.

Table 1: Architecture Configuration of CNN-LSTM Model, where input shape, kernel shape and
output shape are in the manners of (width, height, channel), (# of kernels, mask, stride) and (width,

height, channel) respectively. The stride can either be a single number for both width and height
stride, or a tuple (𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠) representing width and height stride separately.

Input Shape Kernel Shape Output Shape Hidden Size
Conv1 (𝑊𝑊𝐼𝐼 , 128, 7) (32, 3, 1) (𝑊𝑊𝐼𝐼 , 128, 32) -

AvgPool (𝑊𝑊𝐼𝐼 , 128, 32) (-, 2, 2) (𝑊𝑊𝐼𝐼 =2, 64, 32) -
Conv2 (𝑊𝑊𝐼𝐼 =2, 64, 32) (64, 3, 1) (𝑊𝑊𝐼𝐼 =2, 64, 64) -

AvgPool (𝑊𝑊𝐼𝐼 =2, 64, 64) (-, 2, 2) (𝑊𝑊𝐼𝐼 =4, 32, 64) -
Conv3 (𝑊𝑊𝐼𝐼 =4, 32, 64) (128, 3, 1) (𝑊𝑊𝐼𝐼 =4, 32, 128) -
Conv4 (𝑊𝑊𝐼𝐼 =4, 32, 128) (256, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =4, 16, 256) -

AvgPool (𝑊𝑊𝐼𝐼 =4, 16, 256) (-, 2, 2) (𝑊𝑊𝐼𝐼 =8, 8, 256) -
Conv5 (𝑊𝑊𝐼𝐼 =8, 8, 256) (128, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =8, 4, 128) -
Conv6 (𝑊𝑊𝐼𝐼 =8, 4, 128) (256, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =8, 2, 256) -

AvgPool (𝑊𝑊𝐼𝐼 =8, 2, 256) (-, 2, 2) (𝑊𝑊𝐼𝐼 =16, 1, 256) -
LSTM 256 - - 256
FC1 256 - - 128
FC2 128 - - 1

319319

Figure 1: Diagram of CNN-LSTM model.

3.2 Generator

Generator 𝐺𝐺 is basically stacked LSTMs with sampling layers for generating strokes points from
a certain initial stroke point. In this paper, we consider two architectures of generator designed for
prediction and synthesis tasks, denoted as 𝐺𝐺𝑝𝑝 and 𝐺𝐺𝑠𝑠 proposed by Alex [1], illustrated as Figure 2.
The prediction generator 𝐺𝐺𝑝𝑝 only requires the network to generate random handwritten strokes,
while the synthesis 𝐺𝐺𝑠𝑠 generator further asks the model to produce handwriting texts given
prescribed text of user.

Although these two generators are used in different scenarios, they share numerous things in
common. First of all, both of them are stacked LSTMs with outputs as parameters of an appropriate
probability distribution to predict the status of next stroke point given current generated stroke path.
For this probability distribution, Alex [1] proposed to use a mixture of bivariate Gaussian
distribution associated with a Bernoulli distribution to represent the distribution of pen up/down. Our
model incorporates the same idea. Secondly, both generators update their parameters by maximizing
log-likelihood of generated stroke sequences. During the adversarial training, they utilize the signal
from the discriminator described in Section 3.1 to adjust network parameters. Thirdly, both 𝐺𝐺𝑝𝑝 and
𝐺𝐺𝑠𝑠 use biased sampling [1] to achieve higher quality of handwriting generation.

Different from the prediction generator 𝐺𝐺𝑝𝑝, the inputs of synthesis generator 𝐺𝐺𝑠𝑠 requires not
only the stroke point data but also the text information, since the synthesis network needs to know
what texts to generate. The text is a one-hot vector processed from the input string, and input to
LSTM layers with window parameters to constrain the synthesis network.

Figure 2: (a) Diagram of handwritten generator for prediction 𝐺𝐺𝑝𝑝; (b) Diagram of handwritten

generator for synthesis 𝐺𝐺𝑠𝑠; where M is the number of Gaussian distributions with parameters as
𝑒𝑒,𝜋𝜋, 𝜇𝜇,𝜎𝜎, 𝜌𝜌. .

320320

4. Experiments
In this section, we numerically demonstrate the superiority of the adversarial network we

proposed than Alex’s Generator.

4.1 Experimental Settings

Both of the prediction network 𝐺𝐺𝑝𝑝 and synthesis network 𝐺𝐺𝑠𝑠 are trained on IAM dataset [10],
which contains 80 distinct characters. Each stroke point of data possesses x-axis and y-axis offset
from the previous stroke point and a binary end-of-stroke indicator. Architecture configuration
details of discriminator 𝐷𝐷 and two generators 𝐺𝐺𝑝𝑝, 𝐺𝐺𝑠𝑠 are shown in Table 1 to 3 respectively.

It is widely acknowledged that training GANs is relatively difficult [11, 6], and we employ
multiple tricks to train GANs more effectively. Firstly, we normalize input features between -1 and 1.
Secondly, label smoothing technique is applied to both generator and discriminator during
adversarial training [6]. Besides these, discriminator 𝐷𝐷 keeps trained with positive samples from
IAM dataset and negative samples from generators 𝐺𝐺𝑠𝑠 and 𝐺𝐺𝑝𝑝 supervisedly during adversarial
training.

Table 2: Architecture Configuration of LSTM-based Generator for Prediction.
 Input Shape Hidden Size

LSTM1 3 512
LSTM2 515 256
LSTM3 259 512

FC 1280 121

Table 3: Architecture Configuration of LSTM-based Generator for Synthesis.
 Input Shape Hidden Size

LSTM1 57 512
LSTM2 569 512

FC1 512 15
FC2 512 121

4.2 Numerical Results
In this section, experimental results are present to further demonstrate the advantages of our

HWGANs to Alex’s Generator. In general, the HWGANs can produce competitive handwritten
samples in prediction task, more promisingly, it can generate handwritten samples of which stroke
points tend to distribute more spatially uniformly than those sampled from Alex’s Generator, and the
font styles of handwritten text from HWGANs are more neat and sometimes more diverse than those
of Alex’s Generator.

We first describe the performance of our model on prediction tasks compared with Alex’s
Generator. The handwriting instances are sampled with bias as 3.0. As shown in Figure 3,
handwriting samples produced by HWGANs are very competitive to that of Alex, which
demonstrates the excellent abilities of learning handwriting structure of GANs. The samples from
two networks are slightly different in font styles.

321321

Figure 3: Prediction handwriting samples randomly generated by Alex’s Generator and

HWGANs. The top line in each block is generated by Alex’s Generator, while the others are from
HWGANs.

We then compare our model with Alex’s Generator in synthesis task. As an overview, the results
of both models are shown in Figure 4. Generally speaking, we can see that HWGANs may produce
more realistic, more natural and more neat handwritten texts than Alex’s Generator. More detailed
comparisons are followed in the remaining section.

Figure 4: Generated handwritten texts by Alex’s Generator and HWGANs. The top block is from

Alex’s Generator, the bottom one is from HWGANs.

322322

Given that the value of bias used in biased sampling has a large impact on the results, we next test
both models under different sampling biases. In Figure 5, samples are from two networks under
sampling biases as 4, 5, 7 and 10 respectively. The results of HWGANs distribute almost more
spatially uniformly, and neat on every bias. On the other hand, it seems that HWGANs may produce
more diverse handwritten text styles, like the “A”.

Figure 5: Synthesis handwriting data from Alex’s Generator and HWGANs using different

sampling bias. The top block is sampled from Alex’s Generator, the bottom one is from HWGANs.
Besides the above, we also investigate both models based on different prescribed sentences with a

fixed sampling bias as 5.0, and present the results in Figure 6, which further proves the advantages of
our model observed on previous experiments are consistent.

Figure 6: Synthesis handwriting data from Alex’s Generator and HWGANs given different

characters. The top block is sampled from Alex’s Generator, and the bottom block is generated from
HWGANs.

323323

5. Conclusion
We present a new Generative Adversarial Network architecture HWGANs for synthesizing

hand-written text of digital ink. The method comprises two main components, a discriminator
consisting a PSF feature extractor, followed by a CNN-LSTM binary classifier to distinguish
realistic and forgery handwritten data, and a generator following the architectures of Alex Grave’s to
produce either random handwritten characters or sentences with prefixed text. In particular, the
numerical results show that HWGANs are generally better than Alex’s Generator in terms of
uniformness of spatial distribution of stroke points, neatness and diversity of font style. This
phenomenon illustrates that adversarial training is beneficial for generating more realistic
handwritten text data.

References
[1] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv: 1308.
0850, 2013.
[2] Emre Aksan, Fabrizio Pece, and Otmar Hilliges. Deepwriting: Making digital ink editable via
deep generative modeling. CoRR, abs/1801.08379, 2018.
[3] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. CoRR, abs/1506.02216, 2015.
[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672-2680, 2014.
[5] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil
a Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35
(1): 53-65, 2018.
[6] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234-2242, 2016.
[7] Eloi Alonso, Bastien Moysset, and Ronaldo Messina. Adversarial generation of handwritten text
images conditioned on sequences. arXiv preprint arXiv:1903.00277, 2019.
[8] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In Advances in neural information
processing systems, pages 2980-2988, 2015.
[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:
1312. 6114, 2013.
[10] U-V Marti and Horst Bunke. The iam-database: an English sentence database for offline
hand-writing recognition. International Journal on Document Analysis and Recognition, 5(1):39-46,
2002.
[11] Martin Arjovsky and Leon Bottou. Towards principled methods for training generative
adversarial networks. arXiv:1701.04862, 2017.

324324

	1. Introduction
	2. Related Work
	3. Proposed Adversarial Approach
	4. Experiments
	5. Conclusion
	References

