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Abstract: Generative adversarial networks (GANs) has proven hugely successful in variety of 
applications of image processing. However, generative adversarial networks for handwriting is 
relatively rare somehow because of difficulty of handling sequential handwriting data by 
Convolutional Neural Network (CNN). In this paper, we propose a handwriting generative 
adversarial network framework (HWGANs) for synthesizing handwritten stroke data. The main 
features of the new framework include: (i) A discriminator consists of an integrated 
CNN-Long-Short-Term-Memory (LSTM) based feature extraction and a Feedforward Neural 
Network (FNN) based binary classifier; (ii) A recurrent latent variable model as generator for 
synthesizing sequential handwritten data. The numerical experiments show the effectivity of the 
new model. Moreover, comparing with sole handwriting generator, the HWGANs synthesize more 
natural and realistic handwritten text. 

1. Introduction 
Learning generative sequential models is a long-standing machine learning challenge and 

historically in the domain of dynamic Bayesian networks (DBNs) such as Hidden Markov Model 
(HMMs), then further handled by Recurrent Neural Network. However, it has been observed that the 
synthesized texts of the previous models are not as natural as human-being’s normal written text. 

Besides, generative adversarial networks (GANs) are a merging technique proposed in 2014 [4] to 
learn deep representation without numerous annotated training data. This architecture achieves the 
generation of high reality. Therefore, a common analogy is to think of bringing the idea of GANs 
into handwritten text generation of digital ink in order to achieve more realistic handwritten text than 
handwritten generator alone. 

In this paper, we propose a generative adversarial architecture to generate realistic handwritten 
strokes. The following bulleted points summarize our key contributions. 

We design a discriminator consisting of a compact CNN-LSTM based feature extraction, 
followed by an auxiliary feedforward neural network to distinguish between genuine and forgery 
hand-writing.  

We construct an adversarial architecture by combining the designed discriminator and the 
handwritten generator proposed by Alex Grave [1], referred as Alex’s Generator throughout the 
whole remaining paper. 

We use HWGANs to obtain more realistic English handwritten text than Alex’s Generator.  

2. Related Work 
Variational RNN (VRNN) Handwritten Generator: VRNN [8] explores the inclusion of latent 

random variables into the hidden state of an RNN by combining a recurrent variational autoencoder 
(VAE), which is effective modeling paradigm to recover complex multimodal distributions over the 
non-sequential data space [9]. Whereas their synthesized handwritten data are not realistic enough. 

Alex Grave’s Handwritten Generator: Alex Grave proposed an RNN based generator model to 
mimic handwriting data [1]. For each timestamp, Alex’s Generator encodes prefix sampled path to 
produce a set of parameters of a probability distribution of next stroke point, then sample the next 
stroke point given this distribution. There are two variants of Alex’s Generator, i.e., handwritten 
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predictor and handwritten synthesizer, where the later one has the capability to synthesize 
handwritten text for given text. 

3. Proposed Adversarial Approach
In this section, we present our proposed adversarial approach for digital ink handwritten text

generation. As standard architectures of GANs, HWGANs comprise a discriminator 𝐷𝐷 and a 
generator 𝐺𝐺. For a more rigorous description, let us introduce the notations used throughout the 
whole remaining paper. Denote 𝐻𝐻 =  {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛} as a handwritten text instance, which consists 
of a sequence of strokes, where 𝑆𝑆𝑖𝑖 refers as the i-th stroke of current handwritten instance. One 
stroke 𝑆𝑆  comprises a sequential stroke points, i.e., 
𝑆𝑆 =  {(𝑥𝑥1,𝑦𝑦1, 𝑠𝑠1); (𝑥𝑥2,𝑦𝑦2, 𝑠𝑠2); … ; (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑠𝑠𝑚𝑚)} , where (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖)  is i-th stroke point with 
(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) as its coordinate axis and 𝑠𝑠𝑖𝑖 ∈ {0, 1} as pen up/down status respectively to indicate the 
starting or ending stroke point.  

3.1 Discriminator 

Discriminator 𝐷𝐷 is essentially a binary classifier to predict handwritten text of digital ink as a 
forgery or not. The CNN-LSTM model consists of a CNN and an LSTM, whose configurations are 
displayed in Table 1. CNN serves to encode extracted path signature feature into a matrix, since the 
input 3D tensor possesses variable widths, consequently results in that the output matrix of CNN 
possesses variable columns. Then each column of this encoded matrix is further fed into an LSTM 
cell sequentially, an FNN is assembled on the top of last output of the LSTM to calculate the 
probability of current instance as genuine written text. Thus, loss function of discriminator is 
naturally selected as binary cross entropy loss. The whole procedure is shown in Figure 1. 

Table 1: Architecture Configuration of CNN-LSTM Model, where input shape, kernel shape and 
output shape are in the manners of (width, height, channel), (# of kernels, mask, stride) and (width, 

height, channel) respectively. The stride can either be a single number for both width and height 
stride, or a tuple (𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠) representing width and height stride separately. 

Input Shape Kernel Shape Output Shape Hidden Size 
Conv1 (𝑊𝑊𝐼𝐼 , 128, 7) (32, 3, 1) (𝑊𝑊𝐼𝐼 , 128, 32) - 

AvgPool (𝑊𝑊𝐼𝐼 , 128, 32) (-, 2, 2) (𝑊𝑊𝐼𝐼 =2, 64, 32) - 
Conv2 (𝑊𝑊𝐼𝐼 =2, 64, 32) (64, 3, 1) (𝑊𝑊𝐼𝐼 =2, 64, 64) - 

AvgPool (𝑊𝑊𝐼𝐼 =2, 64, 64) (-, 2, 2) (𝑊𝑊𝐼𝐼 =4, 32, 64) - 
Conv3 (𝑊𝑊𝐼𝐼 =4, 32, 64) (128, 3, 1) (𝑊𝑊𝐼𝐼 =4, 32, 128) - 
Conv4 (𝑊𝑊𝐼𝐼 =4, 32, 128) (256, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =4, 16, 256) - 

AvgPool (𝑊𝑊𝐼𝐼 =4, 16, 256) (-, 2, 2) (𝑊𝑊𝐼𝐼 =8, 8, 256) - 
Conv5 (𝑊𝑊𝐼𝐼 =8, 8, 256) (128, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =8, 4, 128) - 
Conv6 (𝑊𝑊𝐼𝐼 =8, 4, 128) (256, 3, (1, 2)) (𝑊𝑊𝐼𝐼 =8, 2, 256) - 

AvgPool (𝑊𝑊𝐼𝐼 =8, 2, 256) (-, 2, 2) (𝑊𝑊𝐼𝐼 =16, 1, 256) - 
LSTM 256 - - 256 
FC1 256 - - 128 
FC2 128 - - 1 
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Figure 1: Diagram of CNN-LSTM model. 

3.2 Generator 

Generator 𝐺𝐺 is basically stacked LSTMs with sampling layers for generating strokes points from 
a certain initial stroke point. In this paper, we consider two architectures of generator designed for 
prediction and synthesis tasks, denoted as 𝐺𝐺𝑝𝑝 and 𝐺𝐺𝑠𝑠 proposed by Alex [1], illustrated as Figure 2. 
The prediction generator 𝐺𝐺𝑝𝑝 only requires the network to generate random handwritten strokes, 
while the synthesis 𝐺𝐺𝑠𝑠  generator further asks the model to produce handwriting texts given 
prescribed text of user. 

Although these two generators are used in different scenarios, they share numerous things in 
common. First of all, both of them are stacked LSTMs with outputs as parameters of an appropriate 
probability distribution to predict the status of next stroke point given current generated stroke path. 
For this probability distribution, Alex [1] proposed to use a mixture of bivariate Gaussian 
distribution associated with a Bernoulli distribution to represent the distribution of pen up/down. Our 
model incorporates the same idea. Secondly, both generators update their parameters by maximizing 
log-likelihood of generated stroke sequences. During the adversarial training, they utilize the signal 
from the discriminator described in Section 3.1 to adjust network parameters. Thirdly, both 𝐺𝐺𝑝𝑝 and 
𝐺𝐺𝑠𝑠 use biased sampling [1] to achieve higher quality of handwriting generation.  

Different from the prediction generator 𝐺𝐺𝑝𝑝, the inputs of synthesis generator 𝐺𝐺𝑠𝑠 requires not 
only the stroke point data but also the text information, since the synthesis network needs to know 
what texts to generate. The text is a one-hot vector processed from the input string, and input to 
LSTM layers with window parameters to constrain the synthesis network. 

 

 
Figure 2: (a) Diagram of handwritten generator for prediction 𝐺𝐺𝑝𝑝; (b) Diagram of handwritten 

generator for synthesis 𝐺𝐺𝑠𝑠; where M is the number of Gaussian distributions with parameters as 
𝑒𝑒,𝜋𝜋, 𝜇𝜇,𝜎𝜎, 𝜌𝜌. . 
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4. Experiments 
In this section, we numerically demonstrate the superiority of the adversarial network we 

proposed than Alex’s Generator.  

4.1 Experimental Settings 

Both of the prediction network 𝐺𝐺𝑝𝑝 and synthesis network 𝐺𝐺𝑠𝑠 are trained on IAM dataset [10], 
which contains 80 distinct characters. Each stroke point of data possesses x-axis and y-axis offset 
from the previous stroke point and a binary end-of-stroke indicator. Architecture configuration 
details of discriminator 𝐷𝐷 and two generators 𝐺𝐺𝑝𝑝, 𝐺𝐺𝑠𝑠 are shown in Table 1 to 3 respectively.  

It is widely acknowledged that training GANs is relatively difficult [11, 6], and we employ 
multiple tricks to train GANs more effectively. Firstly, we normalize input features between -1 and 1. 
Secondly, label smoothing technique is applied to both generator and discriminator during 
adversarial training [6]. Besides these, discriminator 𝐷𝐷 keeps trained with positive samples from 
IAM dataset and negative samples from generators 𝐺𝐺𝑠𝑠 and 𝐺𝐺𝑝𝑝 supervisedly during adversarial 
training.  

Table 2: Architecture Configuration of LSTM-based Generator for Prediction. 
 Input Shape Hidden Size 
   

LSTM1 3 512 
LSTM2 515 256 
LSTM3 259 512 

FC 1280 121 

Table 3: Architecture Configuration of LSTM-based Generator for Synthesis. 
 Input Shape Hidden Size 

LSTM1 57 512 
LSTM2 569 512 

FC1 512 15 
FC2 512 121 

4.2 Numerical Results 
In this section, experimental results are present to further demonstrate the advantages of our 

HWGANs to Alex’s Generator. In general, the HWGANs can produce competitive handwritten 
samples in prediction task, more promisingly, it can generate handwritten samples of which stroke 
points tend to distribute more spatially uniformly than those sampled from Alex’s Generator, and the 
font styles of handwritten text from HWGANs are more neat and sometimes more diverse than those 
of Alex’s Generator. 

We first describe the performance of our model on prediction tasks compared with Alex’s 
Generator. The handwriting instances are sampled with bias as 3.0. As shown in Figure 3, 
handwriting samples produced by HWGANs are very competitive to that of Alex, which 
demonstrates the excellent abilities of learning handwriting structure of GANs. The samples from 
two networks are slightly different in font styles. 
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Figure 3: Prediction handwriting samples randomly generated by Alex’s Generator and 

HWGANs. The top line in each block is generated by Alex’s Generator, while the others are from 
HWGANs. 

We then compare our model with Alex’s Generator in synthesis task. As an overview, the results 
of both models are shown in Figure 4. Generally speaking, we can see that HWGANs may produce 
more realistic, more natural and more neat handwritten texts than Alex’s Generator. More detailed 
comparisons are followed in the remaining section. 

 
Figure 4: Generated handwritten texts by Alex’s Generator and HWGANs. The top block is from 

Alex’s Generator, the bottom one is from HWGANs. 
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Given that the value of bias used in biased sampling has a large impact on the results, we next test 
both models under different sampling biases. In Figure 5, samples are from two networks under 
sampling biases as 4, 5, 7 and 10 respectively. The results of HWGANs distribute almost more 
spatially uniformly, and neat on every bias. On the other hand, it seems that HWGANs may produce 
more diverse handwritten text styles, like the “A”. 
 

 
Figure 5: Synthesis handwriting data from Alex’s Generator and HWGANs using different 

sampling bias. The top block is sampled from Alex’s Generator, the bottom one is from HWGANs. 
Besides the above, we also investigate both models based on different prescribed sentences with a 

fixed sampling bias as 5.0, and present the results in Figure 6, which further proves the advantages of 
our model observed on previous experiments are consistent. 

 
Figure 6: Synthesis handwriting data from Alex’s Generator and HWGANs given different 

characters. The top block is sampled from Alex’s Generator, and the bottom block is generated from 
HWGANs. 
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5. Conclusion 
We present a new Generative Adversarial Network architecture HWGANs for synthesizing 

hand-written text of digital ink. The method comprises two main components, a discriminator 
consisting a PSF feature extractor, followed by a CNN-LSTM binary classifier to distinguish 
realistic and forgery handwritten data, and a generator following the architectures of Alex Grave’s to 
produce either random handwritten characters or sentences with prefixed text. In particular, the 
numerical results show that HWGANs are generally better than Alex’s Generator in terms of 
uniformness of spatial distribution of stroke points, neatness and diversity of font style. This 
phenomenon illustrates that adversarial training is beneficial for generating more realistic 
handwritten text data. 
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